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Different approaches are compared for the analysis of TPD curves of ammonia-zeolite systems. 
Desorption of the adsorbed base, either with no readsorption or with free readsorption, and intra- 
crystalline diffusion of the desorbed ammonia through the zeolitic pores have been considered 
alternatively as the controlling step of the overall process and the corresponding model equations 
have been derived for the evaluation of the kinetic or thermodynamic parameters. The solution of 
such equations may be easily obtained numerically by means of the usual nonlinear regression- 
optimization procedures. The dependence on temperature of the amount of base, chemically held 
by the zeolitic acid centers, and of the apparent diffusion coefficient, has been discussed and some 
model equations are proposed, to be inserted in the main regression routine. (<I 19XX Academic 

Press, Inc. 

INTRODUCTION 

Temperature-programmed desorption 

(TPD) is one of the most widely employed 
techniques for measuring the adsorption 

properties of solids. Two excellent reviews, 
by Falconer and Schwarz (I) and by Lemai- 
tre (2), discuss the advantages and draw- 

backs of the method. For the characteriza- 
tion of surface acidity, in regard to both the 
amount and the strength of acid sites, many 
recent papers (3-12) confirm that TPD of 
preadsorbed ammonia has become very 
popular, so much so that it has been pro- 

posed by the Japanese Catalysis Society as 
a possible standard method for testing acid 
catalysts, particularly zeolites (13). 

Most of the work on this subject is based 
on a procedure suggested in a well-known 
review by Cvetanovic and Amenomiya 
(14). These authors showed that, under 
well-defined conditions, i.e., energetically 
homogeneous surface sites, first-order de- 
sorption rate with respect to the adsorbed 
species, absence of intraparticle diffusion 
effects, and linear temperature increase, a 

correlation among the rate of temperature 
increase /3, the temperature TM at peak 

maximum, and activation energy Ed of de- 
sorption is given by the equation 

2 In TM - In /I = (E~/RTM) + CI (1) 

if readsorption of the adsorbate does not 
occur. If readsorption occurs freely, the 
following similar equation holds, 

2 In TM - In p = (AHdIRT,,,) + CZ, (2) 

in which AHd is the enthalpy change associ- 

ated with desorption. The constants C1 and 
C2 are determined mainly by the experi- 
mental conditions. 

These two equations have been applied 
frequently (3, 4, 9-fl) for the determina- 
tion of I!$ or hHd from the Slope of the 
straight lines obtained by plotting (2 In TM 
- In p) vs ~/TM. Unfortunately, first-order 
desorption processes under kinetic control 
are indistinguishable from diffusion-con- 
trolled ones on the basis of the TPD curve 
shape only. As a consequence, it has been 

pointed out (5, 15-19) that other criteria 
should be employed in order to establish 
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whether diffusion, particularly intraparticle 
diffusion, plays an important or a negligible 
role in the actual TPD experiment. For ex- 
ample, according to Ibok and Ollis (Z5), in- 
traparticle diffusion is most likely to be 
controlling when 

&C, 
pRi ’ v,(deldT),,,’ (3) 

R, being the radius of the adsorbent parti- 
cle, assumed as spherical, D, the effective 
diffusion coefficient within the pores, C’s 
the concentration of adsorbate in the gas- 
eous phase, V, the concentration of active 
sites (of a given species) carrying the adsor- 
bate, per unit volume of particle, and (do/ 

dT)mx the maximum rate of desorption. 
However, when working with zeolites, the 
characteristic particle dimension to be 
taken into account should be the zeolitic 
microcrystal radius R,, rather than the ra- 
dius R, of the bulk solid particle. Indeed, 
the diffusion within the zeolite pores is 
much more difficult than that in the inter- 
crystalline voids within the particle, the ef- 
fective diffusion coefficient being many or- 
ders of magnitude lower in the former than 
in the latter. As a consequence, according 
to the inequality (3), for the conditions usu- 
ally encountered in TPD experiments on 
zeolites, D, should be higher than ca. 10e9 
cm*/s in order to ensure a negligible influ- 
ence of intracrystalline diffusion. In prac- 
tice, lower values of D, are not unusual for 
the diffusion within the zeolite pores. 
Hence it is probable that in many cases the 
overall desorption-diffusion process taking 
place during the TPD experiment on zeo- 
lites is controlled by diffusion, rather than 
by desorption. 

However, the values entering in these 
formulas are seldom available with the de- 
sirable reliability, so that the usefulness of 
such criteria is frequently poor. Further- 
more, it is frequent practice, during the 
TPD experiment with NH3 in zeolites (3- 
5, 7-11), to leave a rather short time for the 
desorption of the physically sorbed ammo- 
nia at the temperature of adsorption, before 

starting the programmed temperature rise. 
This may easily lead to a lack of reproduc- 
ibility and to serious errors in determining 
the amount of chemically adsorbed NH3. 
Indeed, especially for initial isothermal de- 
sorption temperatures lower than 450 K, 
many hours or even days may be required 
for all the physically adsorbed ammonia to 
leave the solid adsorbent. 

In the present work, the sorption-dif- 
fusion of ammonia in zeolites has been 
studied by TPD, by comparing different 
approaches for the analysis of data, 
considering desorption (either with no read- 
sorption or with free readsorption of the de- 
sorbed base) or diffusion within the zeolitic 
pores, as the controlling step of the overall 
process. 

THEORY 

Desorption controlling with no readsorp- 
tion. According to one of the most recently 
proposed methods (II), the distribution of 
the strength of acid sites as a function of the 
activation energy for ammonia desorption 
may be evaluated by representing the de- 
sorption process from sites of different 
strength by a series of irreversible first- 
order reactions: 

NHj-ai-, NH3(g) + cri, (4) 

oi being a surface site of ith strength. Every 
one of these surface reactions is character- 
ized by a particular value of the kinetic con- 
stant kd, expressed by an Arrhenius-type 
equation. Hence a different value of the fre- 
quency factor A and of apparent activation 
energy Ed may be assigned to each reaction. 
If the heating rate p (T = To + Pt) is high 
enough to permit the neglection of read- 
sorption, the ammonia desorption rate may 
be written as 

-d(Aq)ldt = kdAq, (5) 

Aq being the amount of ammonia held by 
acid sites, considered energetically homo- 
geneous, at temperature T, so that Aqo is 
the value of Aq for T = TO. The desorption 
rate constant kd is given by 
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kd = A exp(-EJRT). (6) pair of values of Ed and A for each differ- 

After a series of TPD curves is recorded, by 
raising the starting temperature To by AT 
each time, the difference curve -d(Aq)ldt 
vs t is calculated by evaluating, point by 
point, the difference between such experi- 
mental curves. This is made for each pair of 
curves, whose starting temperatures are 
To and T,, + AT. Aq is then calculated by 
integrating numerically such a difference 
curve. If AT is sufficiently small, the inte- 
gral curve so calculated represents the am- 
monia held by sites of uniform strength, 
characterized by a given pair of Ed and A 
values. 

By combining Eqs. (5) and (6) we obtain 

ence peak are obtained referring only to the 
temperature TM, corresponding to the peak 
maximum, and the solution of the analyti- 
cally unsolvable integral Z is obtained on the 
basis of a previous graphical relationship 
(20). A less rough approach could be the 
following. First, starting from Eq. (13), a 
nonlinear regression procedure is em- 
ployed, evaluating Ed numerically by mini- 
mizing the sum of the squares of the differ- 
ences between the “experimental” and 
“calculated” values, i.e., between the two 
members of the equation. The sum is ex- 
tended to the whole set of experimental 
points, forming the difference curve 
-d(Aq)ldt vs t. Then, by inserting the value 

-d(Aq)/dt = A Aq exp(-&/RT). (7) of J?d so obtained in Eq. (12), the preex- 
nonential factor A is calculated for each of 

However, 

so that 

dt = dTl/3 

the experimental points. The final value of 
(8) A is then obtained by averaging these “sin- 

gle-point” results. 
However, a more reliable solution is 

-d(Aq)lAq = (A/P)exp(-Ed/RT)dT (9) 

which can be integrated between the limits 
Aqo, Aq and TO, T, respectively, to give 

ln(Aq/Aqo) = -(AIP)Z, (10) 

where 

z = i:. exp(-Ed/RT)dT. (11) 

Furthermore, from Eq. (7), 

A = -exp(E~iRT)(l/Aq)d(Aq)/dt (12) 

possible. A nonlinear regression procedure 
(21) is applied directly to Eq. (7), for the 
simultaneous evaluation of both Ed and A, 
by minimizing the sum of the squares of the 
differences between the points forming the 
experimental and the calculated difference 
peaks, i.e., between the two members of 
the equation. The substantial improvement 
of this procedure, with respect to the pre- 
vious one (Zl), is that it does not employ 
only one experimental datum (correspond- 
ing to TM), but it makes use of the whole set 
of experimental data for the calculation of 
Ed and A. Furthermore, the optimization is 
carried out directly on the experimental dif- 
ference curve and the analytically unsolv- 
able integral I no longer needs to be cal- 
culated. 

and combining Eqs. (8), (IO) and (12), 

1 
Aq ln(Aq/Aqo) d(Aq),dZ = eXp(&/RT)f. 

(13) 

In Eq. (13), the left-hand side member con- 
tains only known data and may be defined 
as the “experimental” curve, while the 
right-hand side member can be considered 
the “calculated” curve and contains only 
Ed as an unknown parameter. 

In the work by Hashimoto et al. (II) the 

Desorption controlling with free read- 
sorption. If readsorption of the desorbed 
base occurs freely, i.e., if the ammonia de- 
sorption is reversible, the desorption pro- 
cess from sites of different strength may be 
represented once again by a series of first- 
order reactions, but considered at equilib- 
rium: 
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NH3-o; e NH3(g) + oi. (14) 

Every one of these surface reactions is 
characterized by particular values of the ki- 
netic constants. 

The previous procedure then needs to be 
modified as follows. From Eq. (14) we 
have, at any temperature, 

r,(adsorption rate) = rd(desorption rate), 

(15) 

where 

and 

ra = ~&IO - A& (16) 

rd = kdb, (17) 

k, and kd being the adsorption and desorp- 
tion rate constants, respectively, and C, the 
concentration of ammonia in the gaseous 
phase leaving the zeolite bed. The values of 
d(Aq)ldt, Aq, and Aqo are calculated as seen 
above. Furthermore, for the mass balance, 

FC, = -d(Aq)ldt, (18) 

F being the volumetric flow rate of the car- 
rier gas per unit mass of zeolite. By com- 
bining Eqs. (8), (16), and (18), we obtain 

r, = -(plF)k,(Aqo - Aq)d(Aq)ldT (19) 

and, by virtue of Eq. (15), 

((Aqo - Aq)/Aq)d(Aq) 
= - (FIP)(kdIk,)dT. (20) 

The desorption equilibrium constant 

K,j = kdtk, (21) 

depends on temperature through a van? 
Hoff-type equation 

Kd = K. exp(-AHdIRT), (22) 

where K. = exp(A&/R), AZ& and A& be- 
ing the enthalpy and entropy change, re- 
spectively, associated with the desorption 
process. Combining Eqs. (20) and (22), 

((Aqo - AqYAq)d(Aq) 
= -(FIp)Ko exp(-AHd/RT)dT, (23) 

and integrating 

I f; ((Aqo - Aq)lAq)d(Aq) 

= -(F/p)Ko 1: exp(-AHd/RT)dT (24) 

or 

Aqo ln(AqlAqo) + Aqo - Aq 

= -(FI/?)Ko _/i exp(-AHd/RT)dT. (25) 

Combining Eqs. (23) and (29, 

Aqo ln(AqlAqo) + Aqo - Aq 

= ((Aqo - Aq)lAq)(d(Aq)ldT) 
exp(AHd/RT)Z’, (26) 

where 

I’ = \; exp(-AHd/RT)dT. (27) 

The integral I’ is similar to that defined by 
Eq. (11). It may be solved numerically, 
e.g., by Simpson’s rule, as a subroutine in- 
serted in the nonlinear regression-optimi- 
zation procedure for the evaluation of AZ& 
by means of Eq. (26). 

Equation (26) is implicit in AH,. Its solu- 
tion gives the value of the enthalpy change 
associated with desorption from the sites 
corresponding to the difference peak exam- 
ined. It is important to note that, in such an 
equation, T is any value of temperature 
within the range corresponding to the ac- 
tual difference peak. As a consequence it is 
possible, by means of Eq. (26), to analyze 
the same peak in many points, which must 
lead to the same value of AZ&. In this way, 
the validity of the model can be tested ef- 
fectively. 

Zntracrystalline diffusion controlling. Af- 
ter desorption, the ammonia molecules 
coming from inside the zeolite pores must 
diffuse through the latter to reach the car- 
rier gas, flowing outside the crystals. This 
diffusive process is much more difficult 
than the relatively free diffusion in the bulk 
gaseous phase, owing to the presence of the 
acid sites, in addition to the geometric re- 
striction, due to the narrowness of the 
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pores. The process may be represented as a 
surface diffusion, further slowed down by 
the reversible acid-base chemical reaction. 

Under isothermal conditions, the amount 
of substance that has diffused out of the 
zeolite from t = 0 to t = t is given by (22) 

MJM, = 1 - (6/n2) 2 
n=l 

(1 ln2)exp(-D,n2rr2t/Rf), (28) 

where Mr and M, represent the amount of 
ammonia which has come out of the crystal 
of radius R, after time t or t = a, respec- 
tively, and DO is the effective diffusion coef- 
ficient . 

For nonisothermal conditions, Eq. (28) 
needs to be modified. Let us assume that 
the duration of the TPD experiment is di- 
vided into small time intervals At, so that, 
during each of them, the temperature of the 
system increases by 1 K. During each ith 
increment, the temperature is assumed con- 
stant and equal to T,? = T,-, + 0.5 K. 
Hence, the diffusion of the base may be de- 
scribed by the following modification of Eq. 

(28) 3 

Mari = (N(Ti) - Nm(TT))(l - (6/r2) 

f: (Iln2)exp(- (D,/Rz)(T”)n2r2Ati)), (29) 

where Mhti is the amount of ammonia 
(mmol/g of solid) coming out of the zeolite 
during the time interval Atj, N(Ti) is the 
amount of base present in the porous solid 
during the TPD experiment at temperature 
Ti, and N,(TT) is the amount of ammonia 
chemically held by the zeolite at tempera- 
ture TT. The latter quantity corresponds to 
the zeolitic acid sites still covered at tem- 
perature T”. N( 7;) is given by 

or 

N(T,) = N,(T,) (i = 1) (30) 

N(7’i) = N(Ti-1) + Mhri_1 (i > 1). (31) 

A mass balance, similar to Eq. (IS), may be 
written by inserting finite differences for 

differentials 

-dNldt = MJAt. (32) 

In Eq. (32), the left-hand side member rep- 
resents the experimental TPD peak, while 
the right-hand side member is the calcu- 
lated peak. 

An experimental approach is perhaps the 
safest procedure for obtaining the function 

N, = N,(T) (33) 

describing the dependence on temperature 
of the parameter N,. After collecting data, 
within the actual temperature range, on the 
amount of ammonia chemically held at 
varying temperatures, one may test some 
simple equations (e.g., a low-degree poly- 
nomial or a simple exponential) and evalu- 
ate the relative parameters by the usual op- 
timization procedures. 

As for De/R& an exponential form of the 

type 

D,lRz = A, exp( - EJRT) (34) 

has been suggested (23) for surface diffu- 
sion. However, it must be remembered 
that, in the present case, D, also takes into 
account the additional slowing effect due to 
the reversible chemical reaction between 
sorbate and acid sites, as mentioned. 

The analysis of the TPD experiment may 
then be carried out by drawing a calculated 
peak, by means of Eqs. (29) and (32), in 
which Eqs. (33) and (34) are inserted. This 
calculated peak is then compared with the 
experimental one and the parameters E, 
and A, of Eq. (34) are optimized, by the 
usual nonlinear regression routines (21). 

It may be noted that, in Eq. (34), the pa- 
rameters E, and A, may be considered ap- 
parent kinetic parameters for the intracrys- 
talline diffusion process. 

CONCLUSION 

The equations obtained in the present 
work represent a starting point for the ap- 
plication of the TPD technique to the study 
of the desorption of bases, particularly am- 
monia, from microporous acid solids, par- 
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titularly zeolites. By analyzing the experi- Aq, AqO 
mental TPD data by means of these 
equations describing the characteristics of 
the thermogram, it is possible to obtain in- r,, rd 
formation on which of the various phenom- 
ena involved plays a significant role in the R 
overall process. In Part II (24) this proce- R,, R, 
dure is applied to the study of ammonia de- 
sorption from differently decationated Y- ASd 
zeolites. 

A 

c, 

D, 

6, Ed 

F 

A& 

I, I’ 

k 

MA, 

n 

No, N,, Nm 

NOMENCLATURE 

preexponential factor (s-l) 
concentration of adsorbate 

in the gas phase (mmol/ 
cm3) 

effective diffusion coeffi- 
cient (cm2/s) 

apparent activation energy, 
of diffusion and of de- 
sorption (kcal/mol) 

specific volumetric flow 
rate of carrier gas (cm3/s 

g) 
enthalpy change of desorp- 

tion (kcal/mol) 
integral, defined by Eq. (I 1) 

or (27) 
adsorption rate constant 

(cm3 ss’ mmoll’) 
desorption rate constant 

(s-9 
desorption equilibrium con- 

stant 
thermodynamic parameter 

in Eq. (22) 
ammonia released from the 

zeolite crystals at t = t, m 
(mmol/g) 

ammonia released from the 
zeolite crystals during 
the time interval At 
(mmol/g) 

integer in Eqs. (28), (32), 
(34) 

ammonia present in the ze- 
olite pores at t = 0, t, 00 
(mmol/g) 

ammonia held by energeti- 
cally homogeneous sites 
at T = T, To (mmol/g) 

adsorption and desorption 
rate (mmol/g s) 

gas constant 
radius, of crystal and of 

particle (cm) 
entropy change of desorp- 

tion (e.u.) 
t time (s) 
I. T To, TM, T* temperature, initial, at peak 

P 

8 

urn 

7. 

8. 

9. 

10. 

Il. 

maximum, mean value 
during a given time inter- 
val (K) 

temperature increasing rate 

(K/s) 
fraction of occupied sites 
concentration of active 

sites of a given species 
per unit volume of parti- 
cle (mmol/cm3) 
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